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Using symmetry to determine Hamiltonian matrix elements for quantum systems with ffmite 
group symmetry is a special case of obtaining group-generated irreducible tensorial matrices. 
A group-generated irreducible tensorial matrix transforms irreducibly under the group and is a 
linear combination of group transformations on a reference matrix. The reference matrix ele- 
ments may be appropriate integrals or parameters. The methods of normalized irreducible ten- 
sorial matrices (NITM) are employed to express elements of the generated matrix in terms of 
those of the reference matrix without performing the actual transformations. Only NITM com- 
ponents of the reference matrix with the same transformation properties as the group-gener- 
ated matrix will contribute to its elements. The elements of invariant symmetry-generated 
matrices are proportional to simple averages of certain elements of the reference matrix. This 
relation is substantially more efficient than previous techniques for evaluating matrix elements 
of octahedral and tetragonal d-type ligand-field Hamiltonlans. 

I. Introduction 

Symmetry  considerations can facilitate quantum mechanics by expediting the 
determinat ion of  Hamil tonian  matrix elements [1]. For  systems with finite group 
symmetry  this determinat ion amounts  to matrix element evaluation for a group- 
generated irreducible tensorial m a t r i x -  a matrix that  is expressed as a linear combi- 
nat ion of  group t ransformations on some reference matrix. Elements of  the refer- 
ence matr ix may  be appropriate integrals or parameters.  The elements of  the 
generated matr ix are expressed here in terms of  those of  the reference matr ix  by 
expanding both on a basis of  normalized irreducible tensorial matrices (NITM) 
[2,3]. Only the components  of  the expanded reference matr ix  that  t ransform in the 
same way as the total  group-generated matr ix make any contr ibut ion to the matr ix  
elements. The elements of  the generated matrix are directly expressed in terms of  
reference matr ix  elements without  performing the actual group t ransformations.  
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The NITM are examples of irreducible tensorial sets of operators [4,5], particularly 
as applied by Kibler [6-9]. 

Consider a Hamiltonian matrix [H] ~ over some carrier space V ~ such that [HI°' 
commutes with a finite symmetry group, G ={Ga, a = 1 , . . .  g}, and is given by the 
following linear combination: 

n 
to o.I -1  b3 

[ n ] ~ =  Z [ a a ]  [Z]  [ a  a ] , ( 1 . 1 )  

a=l  

where [Z] ~ is some reference matrix. (More general expressions are considered in 
section 3.) Let these matrices be expressed on an orthonormal basis o fV ~ symme- 
try-adapted to G so that the representation matrices [Ga] ~' are completely reduced. 
The elements of this basis are written 

{ I w ; p ~ r ) , p =  1 , . . . , f ( w ; ~ ) ; ~  = 1 , . . . , M ; r  = 1, . . . , f(c~)},  (1.2) 

where c~ indicates the irreducible representat ion/~ of G, f(o 0 is its dimension, p dis- 
tinguishes repea ted /~ ,  and f(w; ~) is the number of t i m e s / "  occurs i n / ~ ,  given 
by the usual character formula: 

1 M 
Z ~ ~ (1.3) na X~ X a • g -i 

Here X~ is the character of the inverse of the ath class in the a th  irreducible repre- 
sentation and X~ is the character of the crth class in the wth reducible representation. 
The matrix elements are written in bracket form on this orthonormal basis as, 
e.g., (w; par[Z[w; p' a'r').  

Since the Hamiltonian matrix commutes with G, it is in block form on this basis 
with each of the nonzero blocks being diagonal scalar matrices: 

(~; pc~rlHIw; p' ~ ' / )  = 6(~, c~')6(r,/)(w; pc~llHIIw; p' c~) . (1.4) 

The reference matrix [Z] ~ does not in general exhibit this block structure. As shown 
in section 6, the nonzero elements of [H] ~ are related to elements of [Z] ~ by 

n 
(w; P~llnllw; p' ~ )  - f(c~) ~ (w; Pc~rlZlw; P' c~r) ' (1.5) 

r=l  

where n is the number of terms in (1.1). Thus, each of the f(c~) elements along the 
diagonal of a nonzero block of [/-/] ~ is n times the average of the corresponding f(c~) 
elements of [Z] ~. No other elements of [Z] ~ contribute to the Hamiltonian. 

This relation is illustrated in the next section for octahedral and tetragonal 
ligand fields. Generalizations are considered in the third section and matrix expan- 
sion on an NITM basis is treated in the fourth. Finally, the relation of which (1.5) 
is a special case is derived in sections 5 and 6. 
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2. Applications to ligand field Hamiltonians 

A spatially regular potential such as the ligand field about a complexed ion can 
be written with operators from an appropriate point group G. Then, 

n 

[V] = ~_.,[Gal[VrlG-~l], (2.1) 
a = l  

where [Vr] is an appropriate reference interaction and n is some integer less than 
or equal to g [10]. Two examples of symmetry-generated matrices are octahedral 
and tetragonal ligand field Hamiltonians over d-orbitals. 

For the octahedral case the reference ligand field potential may be a single ligand 
along the positive z-axis interacting with the central ion at the origin, [Vz]. The 
remaining ligand interactions may be generated by rotating through 7r/2 radians 
about the four positive and negative x- and y-axis, and through 7r radians about any 
one of the four. Counting the identity, this makes six octahedral operations. 
Many other sets of group operations can generate the total octahedral potential 
from [ Vz], but all will contain six elements. One set that forms the group D3 consists 
of three-fold rotations about the { 1, 1, 1 } axis and two-fold rotations about the 
three dihedral { 1, - 1, 0}, { 1, 0, - 1 }, {0, 1, - 1 } axes [11]. 

It is convenient to employ functions symmetry adapted to the tetragonal 
O ~ D4 sequence, where O is the octahedral group and D4 is the dihedral group, 
with the four-fold axis of D4 along the z-axis. From Griffith these are [12] 

leg, alg> = 120> ~-, 122 - x 2 - y2>, 

leg, big) = --~ (122) + 12 - 2>) ,-, Ix 2 - ya>, 

[t2g, eg, x> -- (121> + 12 - 1)) ,.o[yz), 

It2g, eg, y> = ([217 - 1 2 -  17) ~lzx>, 

1 
It2g, b2, z> = - ~  (122> - 12 - 2)) ~-, [xy>. (2.2) 

On this basis, the one-electron interaction matrix for a single ligand along the posi- 
tive z-axis is 



4 M.L. Ellzey, Jr. / Group-generatedmatrices 

[hz] = 

eg eg t~  t~  t~  

a 0 0 0 0 

0 6 0 0 0 

0 0 ~ 0 0 

0 0 0 ~ 0 

0 0 0 0 6 

(2.3) 

where the upper left two-by-two block corresponds to the two eg states and the 
lower right three-by-three block corresponds to the three t2g states. The parameters 
are the usual orbital interactions [1 ]: 

cr = (2 01hzl2 0>, 

7r = <2 - llhzl2 - 1> = (2  llhzl2 1 ) ,  

6 = ( 2  - 2lhz[2 - 2 )  --- ( 2  21hzl2 2 ) .  (2.4)  

The average of the diagonal elements in the eg block is (or + 6)/2. After multiplying 
by six for the number of terms in (2.1), each of the diagonal eg elements in the com- 
plete Hamiltonian is 

6(~ + 6) = 3(° + 6). (2.5) 

Likewise, averaging the three diagonal elements in the t2g block and multiplying 
by six yields the values 

6(7r + 7r + 6) = 47r + 26. (2.6) 

Therefore, the complete one-electron octahedral ligand field Hamiltonian matrix 

eg eg t2g t2g t2g 

3(or + 6) 0 0 0 0 

0 3(~ + 6) 0 0 0 

0 0 2(2~ + 6) 0 0 

0 0 0 2(2~r + 6) 0 

0 0 0 0 2(27r + 6) 

[hi = 

is 

(2.7) 

The ease of this calculation should be compared with constructing and summing 
each of the six interaction matrices [1]. 

The second example is a tetragonal D4 system. The previous reference matrix is 
not suited for application of(2.1) since ligands in the x, y plane cannot be obtained 
by transformations of the D4 symmetry group having its four-fold axis along the 
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z-axis. Therefore, the reference ligand is taken along the x-axis with the interaction 
matrix obtained from ref. [1]: 

[hx] = 

alg big eg eg b2g 

¼ ( , , + 3 6 )  4 ( , , - 6 )  o o o 

4 ( c r - 6 )  ¼(3o'+6) 0 0 0 

0 0 6 0 0 

0 0 0 7r 0 

0 0 0 0 7r 

(2.8) 

The off-diagonal elements between the alg and big blocks make no contribution. 
Since the alg, big, and b2g elements belong to one-by-one blocks, they need only be 
multiplied by the number of group operations, four in this case. The two diagonal 
elements of the eg block are averaged, then multiplied by four. The complete Hamil- 
tonian matrix for the D4 system is then 

[h] = 

alg big eg eg b2g 
a + 3 6  0 0 0 0 

0 3o-+6 0 0 0 

o o + 6) o o 

o o o + 6) o 
0 0 0 0 47r 

(2.9) 

Note that the operations in the sum in (2.1) must belong to the symmetry group 
under which the generated matrix is invariant. It is possible to generate a ligand 
field potential tetragonal about the x-axis starting with a reference ligand along the 
z-axis and using powers of Ca 1°° as generators, but the orbital functions (2.2) are 
not adapted to this D4 group so that (1.5) does not apply. 

In both these examples, since no irreducible representation occurs more than 
once, the eigenvalues can be read off the diagonal of the complete Hamiltonian. In 
the more general case a secular equation must be solved, but evaluation of the 
matrix elements follows the same procedure. 

An octahedral potential can also be generated from [hx] and it is instructive to 
compare this calculation with that from [hz]. As before, the upper left two-by-two 
block is the eg block and the lower right three-by-three block is the t2g block. Also, 
as before, six operations are required to generate [hoet] from [hx]. The average of 
the two diagonal elements of the eg block is 

1{¼(3cr + 6) +1(or + 36)} = !( a 2  + 6) . (2.10) 

After multiplication by six, the correct result is obtained: 3(or + 6). The average of 
the three t2g elements is 
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½(zr + lr + 6), (2.11) 

which, after multiplication by six, gives the previous answer: 2(2zr + 6). Clearly 
there may be many reference matrices from which a particular Hamiltonian matrix 
can be generated. The best choice is a matter of judgement and convenience. 

3. General considerations 

Equation (1.5) is a special case of a more general relation for group generated 
irreducible tensorial matrices. The general concepts are introduced in this section. 

A matrix [Y]'~'m with f(wl) rows and f(w2) columns transforms under a group 
operator Ga E G according to 

Goo[rq ,,  = , (3.1) 

where [Ga] ~ and [Gal] m belong to unitary representat ions/~ a n d / ~  of G having 
dimensions f(wl) and f(w2), respectively. By definition, a group-generated matrix 
[W] ~'~'~ can be expressed as a linear combination of transformations (3.1) on some 
reference matrix [Z] ~'m: 

= Z ( x ) o G o o [ z ]  
a 

= x o [ z ]  , ( 3 . 2 )  

where X is an element of the Frobenius algebra, A(G), of G [13]. In general, for 
any [W] ~ 'm there may be many possible X and [Zff ~'~. 

The unitary representations/-~ a n d / ~  can be either reducible or irreducible. 
In order to exploit the full power of the NITM, it is necessary that the reducible 
representations/~'  a n d / ~  be completely reduced and this is assumed throughout 
this work. Reducing representations is equivalent to symmetry adapting the basis 
of the carrier space which can always be done in principle by the matric basis algo- 
rithm described in ref. [1] and ref. [13]. This algorithm has the added advantage 
of generating specific matrices for irreducible representations of the group. It will 
be convenient in this paper to indicate strictly irreducible representations by indices 
0~, O~ 1 , and t~ 2.  

An irreducible tensorial matrix [ Yff]~ '~ transform according to the a irreducible 
representation,/~, of a group G. Then 

f (ot)  
Ot Ot (OI ~U~2 Ga°[Yff] ~''~2 = [Gaff'[Yff]~"~[G-~l] ~ = Y]jGa]er[Y,~] , (3.3) 

where [Ga] ~ belongs t o / ~ .  Then the set of matrices 
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{[y~],,,,oa, r =  1 , 2 , . . . , f ( ~ ) }  (3.4) 

is an irreducible tensorial set of G [ 1 ]. 
Combining these two concepts, a group-generated irreducible tensorial matrix 

is 
g 

a 

~_ y o [ Z ]  w h ~  , (3.5) 

Although it might be expected that the c~ and r indices should occur on the right 
of (3.5), neither the algebraic operator nor the matrix need exhibit this type of trans- 
formational behavior. Rather, the operator and reference matrix interact together 
to produce a matrix with the indicated transformation property. For example, it 
may be the case that the reference matrix contains hidden symmetries as with the 
Coulombic potential discussed below and by Klein [14]. 

Of particular interest are the elements of a matrix invariant under the group, 
such as the Hamiltonian matrix in quantum mechanics [15]. In thfs case, the gener- 
ated matrix may be said to be symmetry-generated. The invariant, or symmetric, 
irreducible representation, denoted here by / , s ,  is one dimensional, f(S) = 1, and 
all the matrices are one: [Ga] s = 1. Thus 

GaO[YS],o,,,,~ = [yS]~,,~ (3.6) 

so that 

[Ga]"[YS]~"~ = [yS],o,m[G~],~" (3.7) 

I f U  °1 = / - ~ ,  then (3.7) is a commutation relation. 
A number of important physical quantities can be expressed as group-generated 

irreducible tensorial matrices. For example, in appropriate units, the total electro- 
static potential energy ofNcharges,  q;, i = 1, 2, . . . ,  N, is 

N t 1 
V = y ~ ( q . q j ) - -  

i <j rij 

N 

= ~-'~(qiqj)PilPj~ "--L P2jPu,  (3.8) 
i<j  r12 

where Pu and P2j are transpositions from the symmetric group SN and the remain- 
ing quantities have their usual significance. Over a basis of a finite carrier space, 
V ~, the operators in (3.8) are replaced by their matrix representations: 

° 

[V] w =  Z ( q i q j ) [ e i l e y 2 l  w [e2jPli]  w (3 .9 )  
i<j  
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analogous to (3.2). If the N charges are identical, then (qiqj) = q2, V is invariant 
to all N! permutations of SN, and SN is a symmetry group for this operator. 

In similar manner, a spatially regular potential such as the ligand field for a com- 
plexed ion can be written with operators from an appropriate point group G. 

g 

[V] = ~(V)a[Ga][Vr][Gal] ,  (3.10) 
a=l  

where [V r] is a reference potential, perhaps an interaction along the positive z- 
axis. Depending on the coefficients ( V)a, [V] may be invariant under G or one of its 
subgroups. This expression is the foundation for the superposition model employed 
in various quantum mechanical treatments [2]. 

When the X in (3.5) is an element of the matric basis of A(G), group-generation 
of [yff],,,l,,,~ corresponds to symmetry adaption by projection with matric basis ele- 
ments [1,13]. Two examples are the symmetrizer: 

1 g 
X =  e s = g~-~a=l Ga , (3.11) 

and the antisymmetrizer: 

x = e = Ga] 6a, (3 .12)  
g a=l 

where the one by one matrix [G~] A is the parity of Ga. That is, [G~] A = 1 if the parity 
of G~ is even, and [G~] A = - 1 if the parity of G~ is odd. 

These operators incorporate the maximum number of group transformations 
in X in contrast to (3.9) and (3.10) which contain fewer elements. For example, for 
four electrons, (3.9) contains six terms while the order of the symmetric group $4 
and the number of terms in (3.11) is 4! = 24. This is an example of regular induction 
and together with semiregular induction is discussed by Klein in ref. [14]. 

For the 24-element octahedral group consider a field [V ~] generated by the sym- 
metrizer according to 

[V'] = eSo[ Vz] 

1 24 
= ~-~a~=l[Ga][Vz][Gal]. (3.13) 

Comparison of this expression with (2.1)for IV] with n = 6 shows that [V'] differs 
from [ V] by the factor (1 / 6), consistent with the Wigner-Eckart theorem: 

[V'] = ~[V]. (3.14) 

Relation (3.14) follows from the fact that the six terms of [ V] must be generated 
four times in the summation of(3.13). 
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The approach taken in this work is to expand the reference matrix [Z] °ram of 
(3.2) on an NITM basis and to retain those terms that transform like [y~]~l,m. 
Matrix elements of [ YT] ~'~2 are then obtained in terms of matrix elements of the 
NITM and [Z] ~'m. The important properties of NITM bases are listed in the next 
section. 

4. N I T M  bases o f  matrix spaces 

The properties of NITM have been treated at length in previous papers and will 
be reviewed here without proof [1,2,7]. The NITM are f(t~l) x f(t~2) matrices, 
[nr~],~l,,~2, whose elements are given for simply reducible unitary groups in terms of 
3 - c~ symbols according to [16,17]: 

r Jrlr2 r r2 

where ¢ is a phase factor and ~1 is the appropriate index contragredient to rl. The 
matrices { [n~'] ~1'~2, r = 1, 2 , . . . ,  f(a)} constitute an irreducible tensorial set: 

r(~) 
[Ga]al[nar]cxi,ai[Gal]C~z _..,_ / A,.,ajr, rt,~e j ~ ' ~ r r : ' .  1 a r,,alal,~2 (4.2) 

r '=l  

and, as shown by Kibler [7], are orthonormal under the Cartesian inner product, 
given by the trace 

trace{[n~']~'~2t[n~] ~''~2} = 6(r, t)6(a, a'). (4.3) 

Here t indicates the Hermitian adjoint, the transpose for these real matrices. Con- 
sequently, the NITM are linearly independent and the set 

In ~]~''42" a = 1, 2, , M, .~. f(al ,  42; or) ¢ 0; 
k r J  ~ " ' "  

r =  1 ,2 , . . . , f ( a )}  (4.4) 

spans the f(ax) x f(a2) matrix space, M(al  x 42), On this basis, an element 
[y]~,~2 ~M(al  x 42)isexpressedas 

M f(a) 

[Y]'~":~ = Z ~ ( Y ) '  [nr] , (4.5) 
¢~ r=l 

where the coefficients ( y)a,,m;~ are given by 

(y)~.-~;o = trace{[n~,]~,~i[ y]a~,~2} (4.6) 

The coupling frequency f(al ,  42; t~) is given by the usual character formula [18] 
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f(C~l, Or2; O~) f(a) M X--" ,, ,,~,,a,,,~2 (4.7) : L_~"PA~ Ap Ap 
g p=l 

where np is the number of elements in the pth class and X~ is the character of the class 
of inverses of the pth class. 

The set (4.4) is a simple basis for M(al  x 42). More generally, elements of a 
matrix space M(wl x w2) transform according to reduced representations as in 
(3.1). These representations reduce as the direct sums: 

M M 

U ° ' =  ~ ~ f ( w l ; a , ) F  a', / ~  = y ~  ~f(w2;a2)F 42, (4.8) 
~1 Or2 

where the frequencies f(wl; 41) and f(w2; c~2) are evaluated from (1.3). In this case, 
the space M(wx x w2) is spanned by a compound NITM basis: 

{ [nCqpl cq ,ma2 t rJ ,Pl = 1 ,2 , . . . , f (co l ;a l ) ;a l  ---- 1 , 2 , . . . , M ;  

P2 = 1 ,2 , . . . ,  f(w2; or2); 42 = 1 ,2 , . . . ,  M; 

all a . ~ - f ( a l , a 2 ;  a) ¢ - 0 ; r =  1 ,2 , . . . , f ( a )} ,  (4.9) 

where all elements of the matrix [n~] p'~''t~2 are zero except for the block indexed 
by plal ,  p2o~2 and it is identical to [n~] ~''~. Elements of (4.9) are therefore ortho- 
normal under the trace 

I O/l. I~X/ 
trace{[n~ ]#~ ";~ 2t[nra]P'a"ma2 } = 6(a', a)6(r t, r) 

x 6(p'l,pl)6(a'x,al)6(p[,p2)6(a~2, a2) (4.10) 

and transform irreducibly under group operators 

f(c~) 

[GalWl[n~rlPl°q,P2°t2[G21] t~ ~-~rt"7 l = f.=lp,=,,m=~ (4.11) 
: ~..,¢ Lual tar L,,#j 

r ~ 

Matrices [y]=,,=2 e M(Wl x c02) are partitioned into f(al)  x f(a2)-dimensional 
blocks consistent with the reduction of / -~  a n d / ~ .  The matrix [y]p~=l,m=2 is zero 
except in the block indexed by p141, p242 so that [ Y]=a '~ is the sum 

f(wl;cq) M f(wl;~2) M 

[Y]~"~= Z Z ~ ~[y]p,~,,m~2, (4.12) 
p l= l  a l = l  p2=l 42=1 

where each block is 

,v f(a) 
p, Oq ~p20~2;O~ O~ pl Oq ,p20~2 [ylp, a,,ma2 = ~ Z ( y ) r  [nr] (4.13) 

a = l  r= l  

with coefficients given by the trace 
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( r)rP,~,,m~2;~ = trace{[n~lP, m,m~t[ y]~o,,o~ }. (4.14) 

5. Expanded  matrices 

Expansion of the irreducible tensorial matrix [YT]~' '~ in (3.3) on the compound 
NITM basis (4.9) involves only terms indexed by a and r: 

f(wl;cq) M f(u~;c~2) M 

[YTV (5.1) 
Pl ~1 /92 ~2 

where the summations are over all terms such that f(c~l, c~2; o~) # 0. Consistent 
with the Wigner-Eckart theorem, the blocked matrix [Y T] p'm'm~2 is proportional 
to the corresponding NITM [n~] pl m,mo,2: 

[y#]m,,o,-, = ( p,~,,m,;~ ~ PI~I,)020~2 Y)r  [nr] • (5.2) 

On the other hand, a group-generated irreducible tensorial matrix [Yr~] ~ '~  is 
expressed as in (3.5) in terms of a general reference matrix [Z] ~ 'm and an algebraic 
operator X. Expanding [Z] ~''~ on the compound NITM basis, applying (4.11), 
and equating coefficients with (5.2) gives the general expression 

g f(~) 
plOtl )/02Ot2 ;O~ (Y)Pr 'c~.'mc'z;e' = ~_~()()a  Z [ G a l r r ' ( Z ) r  ' , (5.3) 

a = l  d = l  

where 

(Z)~ 'm'~2;~ = trace{[n~]O'm'~t[Z]~°"~°2}. (5.4) 

Explicit irreducible matrix representations of the group are therefore required 
for the general case (5.3) and these matrices must be consistent with the transforma- 
tion properties of the NITM. As mentioned before, two irreducible representations 
which can be written down for any group are the symmetric and antisymmetric 
representations. The relation for the symmetric, or invariant, case is derived in the 
next section. 

6. Invariant  matr i ce s  

As noted in the introduction, all matrices of the invariant irreducible representa- 
tion, F s ,  are one dimensional and equal to one. From the properties of 3-a symbols, 
the invariant NITM are given by 

1 
In s1 ''°2 = V Z7 I Jr,,r2 ' (6.1) 
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where ~ = ~l = c~2. Upon substitution of this expression into (5.2), a generaliza- 
tion of Schur's lemma is obtained: 

p~,m~.s 1 (6.2) t[ YS]PI°q'~°~21 Jr, r2 = 6(oq, o~2)tS(rl,r2)( Y)l ' X / ~  

Thus, when a matrix satisfies (3.6), or its equivalent (3.7), its only nonzero elements 
occur along the diagonals of square blocks such that al = a2, these being the only 
blocks that yield the invariant. Moreover, each of these blocks is a scalar matrix, 
since all the diagonal elements are equal. 

Substitution of (6.1) into (5.4), produces the following invariant coefficients for 
the reference matrix [Z] ~°''~: 

f(a) 
V"r  (6.3) ( / ) P '  °q 'P2~:~;S --~ 6(Oq, ~2) /-#-T2~L..~L--Ir r , 

V j" t,u) r=l 

so that (5.3) is 

= 1 Z [Z] r#; cqp2o ~ (X )a  " (6.4) 

Using (6.1) and (6.4) with (5.1) gives for the matrix elements of [ yS]p,,,,,m~2: 

f(a) / '  g \ 

L'I'vSlpI°q'P2"I Jrlr, ----(~( OLI, c~2)6(ri, r2) Z [  ]rr (X)a . (6.5) 
r--I \ a = l  / 

Expression (6.5) relates the nonzero elements of [ YlS] p' ~''m~2 to those of the refer- 
ence matrix [Z] ~'''~. Each of the f(c~) elements on the diagonal of the nonzero block 
[yS]p~,m~ of [YlS]~,~,m is equal to the average of the corresponding f(a) elements 
of [Z] ~'~°2 multiplied by the quantity in parentheses. This is a considerable simplifi- 
cation, since no other elements of [2.] ~''~2 enter into the calculation. 

The summation in parentheses is simply a number that multiplies all matrix ele- 
ments. For example, if all the coefficients (X)a are one or zero, then this quantity 
is the number of nonzero terms in (3.2). For another example, i fX is the symmetri- 
zer operator in (3.11) then each of the (X)a is equal to 1/g, the quantity in paren- 
theses is one and the nonzero elements of [YlS] ~°~'~°2 are simple averages of the 
corresponding elements in [Z] ~''~. 

7. C o n c l u s i o n  

The ligand field examples of section 2 are particularly straightforward illustra- 
tions of these relations. Other applications, including molecular orbital calcula- 
tions, are in preparation. 

The procedures described in this paper use NITM to facilitate the application 
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of symmetry to general group-generated irreducible tensorial matrices. The results 
are based on the assumption that the reducible r e p r e s e n t a t i o n s / ~  a n d / - ~  are - 
completely reduced as in the ligand field examples. I f / ~  a n d / - ~  are not  reduced 
certain relationships still hold and these are the subject of further work. 
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